

PQR HELM Powerflow

The Full Powerflow

The (full) Power Flow option is also called PQR-HELM powerflow, as opposed to Q-HELM or PQ-HELM.

EleQuant

- When dealing with a new case, the first thing you should try is just running a standard (full) powerflow.
- If it does not have a solution, it is advised to first solve a Q-HELM powerflow. If it does not have a solution, there are severe "structural" problems to solve first (the reactive power flows are not feasible).
- If Q-HELM does have a solution but PQ-HELM does not, then there are problems of excessive real power flows.
- If PQ-HELM does have a solution but the full ("PQR") powerflow does not, there are also problems with excessive active power flows, but compounded by transmission losses. There might be some erroneous R parameters, for instance.

$\mathsf{Q}\text{-}\mathsf{HELM} \Longrightarrow \mathsf{PQ}\text{-}\mathsf{HELM} \Longrightarrow \mathsf{full}\text{-}\mathsf{HELM}$

- If the full powerflow has a solution, then the PQ and Q powerflows also have a solution.
- The converse is not necessarily true.
- Note that voltages computed with full HELM are lower than voltages computed with PQ-HELM or Q-HELM (this is expected).

EleOuan

R=100%: no solution (case is collapsed).

 R=0% --> just like a PQ power flow (except for angles). We obtain feasibility in this case.

EleQuant

• R=50% : still solves.

R=60%: unfeasible.

• R=55%: feasible.

- Contrary to what happens for Q-HELM and PQ-HELM, the full powerflow problem does not admit a Lagrangian formulation.
- Remember that the Lagrangian allows one to define *a criterion* for the selection of the best configuration of saturated states, whenever there are several possible ones (as it is usually the case).
- But as resistive losses in transmission networks are small (compare I²R vs. I²X), it is plausible to propose that the optimal configuration of saturated controls in the PQ-HELM problem is also the "best" one for the full problem (actually, there is no rigorous definition for "best" in that case!).

HQ Barcelona

Av. de la Torre Blanca, 57 08172 Sant Cugat del Vallès Barcelona Tel. +34 93 504 49 00

San Francisco

48 Terra Vista Ave. # D San Francisco, CA 94115 Tel. 1 415 978 98 00 Fax. 1 415 978 98 10